Journal of Organometallic Chemistry, 280 (1985) C51–C53 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

METALLATION OF ALIPHATIC CARBON ATOMS

II*, SYNTHESES AND CHARACTERIZATION OF THE CYCLOPALLADATED COMPLEXES OF N,N-DIMETHYLNEOPENTYLAMINE

YOSHIO FUCHITA, KATSUMA HIRAKI* and YASUHIRO MATSUMOTO

Department of Industrial Chemistry, Faculty of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki 852 (Japan)

(Received August 18th, 1984)

Summary

N,N-Dimethylneopentylamine reacts with $Pd(MeCO_2)_2$ to give a novel trinuclear cyclopalladated complex $[Me_2NCH_2CMe_2CH_2Pd(\mu-MeCO_2)_2Pd(\mu-MeCO_2)_2PdCH_2CMe_2CH_2NMe_2] \cdot 0.5C_6H_6$ (I). The reaction of I with PPh₃ affords both trans- $[Pd(MeCO_2)_2 - (PPh_3)_2]$ (II) and $[Pd(CH_2CMe_2CH_2NMe_2)(MeCO_2)(PPh_3)]$ (III). The reaction of III with LiCl yields a mononuclear cyclopalladated complex, $[Pd(CH_2CMe_2CH_2NMe_2)Cl(PPh_3)]$ (IV).

Metallation of an aliphatic carbon atom has been one of the current topics in organometallic chemistry in association with the activation of C—H bonds by transition metals [1]. Recently, we [2] reported the syntheses of the sixmembered cyclopalladated complexes of 2-neopentylpyridine through direct metallation of the aliphatic carbon atom by use of $Pd(MeCO_2)_2$. This communication deals with the cyclopalladation of N,N-dimethylneopentylamine by $Pd(MeCO_2)_2$, resulting in the formation of a novel trinuclear cyclopalladated complex.

N,N-Dimethylneopentylamine (5.5 mmol) reacted with Pd(MeCO₂)₂ (4.45 mmol) in benzene (20 ml) at 50–55°C for 1.5 h. After the mixture was filtered to remove the precipitated palladium black, the filtrate was concentrated under reduced pressure and diluted with hexane to give a novel trinuclear cyclopalladated complex, $[Me_2NCH_2CMe_2CH_2Pd(\mu-MeCO_2)_2Pd-$ (μ -MeCO₂)₂PdCH₂CMe₂CH₂NMe₂] \cdot 0.5C₆H₆ * (I) in 36% yield (Scheme 1).

^{*}Satisfactory elemental analysis and ¹H NMR data were obtained.

Complex I was not isolated from the reaction mixture either in acetic acid at 70° C or in methanol at 60° C.

When N,N-dimethylneopentylamine was treated with $Pd(MeCO_2)_2$ in a molar ratio of 2/3 or 1/1 in $CDCl_3$ at 19°C, it was observed by ¹H NMR spectroscopy that I was formed smoothly. As for the reaction in the molar ratio of 2/1, I was produced in lower yield (about 10% after 4 h), and a large amount of palladium black was formed. In no case was any other cyclopalladated complex, such as a binuclear one, detected.

Complex I reacted with PPh₃ to produce trans-[Pd(MeCO₂)₂(PPh₃)₂] (II) in 56% yield, as well as an oily product, Pd(CH₂CMe₂CH₂NMe₂)(MeCO₂)-(PPh₃)* (III). The IR spectrum of II coincided quite well with that of the authentic sample [3]. The oily product III was uncrystallizable and was converted into Pd(CH₂CMe₂CH₂NMe₂)Cl(PPh₃) (IV) in 55% yield (based on I) by reaction with LiCl.

The IR spectrum of I exhibited $\nu(COO^{-})$ frequencies due to bridging acetato groups at 1610(s), 1570(s), 1405(s), 1380(s), and 1335(s) cm⁻¹, which were very similar to those of the trimeric palladium(II) acetate [3]. The ¹H NMR spectrum of IV in CDCl₃ exhibited two methylene proton signals at δ 1.34 $(d, {}^{3}J(HP) 4.5 \text{ Hz}; Pd-CH_{2})$ and 2.50 ppm (s, N-CH₂) and two methyl proton signals at δ 1.02 (s, CMe₂) and 2.89 ppm (d, ⁴J(HP) 2.5 Hz; NMe₂). The resonance at δ 1.34 ppm was assigned to the protons of the palladium-bonded methylene group which was produced by the cyclopalladation of N,N-dimethylneopentylamine. The coupling of the protons of both $Pd-CH_2$ and NMe_2 with the ³¹P nucleus confirmed strongly the presence of a CH_2 NMe_2 chelate structure. The small coupling constant ${}^{3}J(HP)$ for Pd-CH₂ suggests that PPh_3 is situated in a *cis* position to the palladated methylene carbon. These facts indicate unambiguously that I contains both the $Pd(CH_2CMe_2CH_2NMe_2)(MeCO_2)$ and $Pd(MeCO_2)_2$ moieties. On the basis of these discussions, the elemental analysis, and the molecular weight (745.1 in benzene, calcd. 783.9), complex I was assigned to have trinuclear structure, which involves four acetato bridges and two $Me_2NCH_2CMe_2CH_2-C^1$, N chelates. It is noteworthy that N,N-dimethylneopentylamine reacted with $Pd(MeCO_2)_2$ in hot benzene to afford directly the trinuclear cyclopalladated complex, I. Ukhin et al. [4] reported that $Pd(MeCO_2)_2$ reacted with 2,6-disubstituted pyrylium salts to afford trinuclear bis $(1-3-\eta-1,3-diacylallyl)$ tripalladium(II) complexes having four μ -acetato ligands.

As for the ¹H NMR spectrum of I in CDCl₃ at 14°C, the acetato-methyl protons appeared as four singlets at δ 1.78 (2.4H), 1.80 (2.4H), 1.82 (3.6H), and 1.84 ppm (3.6H), indicating that I contains both an $(a-C^1, b-N)$ - $(k-C^1, l-N)$ -type (ak-type) isomer and an $(a-C^1, b-N)$ - $(k-N, l-C^1)$ -type (al-type) isomer (Scheme 1) in a ratio of about 2/3. In addition, I exhibited two sets of signals corresponding to the two isomers. At 14°C, one set consisted of six signals at δ 1.33 (s, H_3 CCCH₃), 1.36 (s, H_3 CCCH₃), 2.40 (q, $\Delta\delta$ 0.29 ppm, ²J(HH) 8 Hz, Pd–CH₂), 2.45 (q, $\Delta\delta$ 0.29 ppm, ²J(HH) 9 Hz, N–CH₂), 2.88

^{*}The ¹H NMR spectrum of III was very similar to that of IV, except for the acetato-methyl proton resonance at δ 1.54 ppm.

SCHEME 1. Reagents: i, PPh₃; ii, LiCl.

(s, H_3 CNCH₃), and 3.01 ppm (s, H_3 CNCH₃) and was temperature-dependent. At 43°C the two C-methyl proton signals united to give one singlet at δ 1.34 ppm, whereas the two N-methyl proton signals coalesced into one singlet at δ 2.98 ppm; then, the two quartets changed into broad signals. The other set involved four singlets at δ 1.27 [C(CH₃)₂], 2.73 (Pd-CH₂), 2.93 (N-CH₂), and 3.01 ppm [N(CH₃)₂]* and virtually did not change in the range $-35-43^{\circ}$ C. The temperature-dependency of the ¹H NMR spectra of I was associated with the inversion of the acetato bridges, as observed for the other binuclear acetato-bridged complexes [5,6]. The inversion corresponding to the former set was actually quenched below 20°C, whereas that corresponding to the latter set was not quenched even at -35° C.

The ¹³C-{¹H} NMR data of I in CDCl₃ at 24°C are quite consistent with the presence of the two isomers, showing four carboxylato carbon signals at δ 181.6, 181.9, 183.4, and 183.5 ppm, two acetato-methyl carbon signals at δ 22.4 and 23.4 ppm, and two C-methyl carbon signals at δ 28.3 and 28.6 ppm. In addition, I exhibited four singlets at δ 35.9 (Pd-CH₂), 43.8 (CMe₂), 54.3 [N(CH₃)₂], and 80.3 (NCH₂).

The stability of I, III, and IV is associated with both the chelate structure of the PdCH₂CMe₂CH₂NMe₂ moiety and the lack of β -hydrogen in the 3-(dimethylamino)-2,2-dimethylpropyl group.

Acknowledgements. The present work was partially supported by a Grantin-Aid for Scientific Research from the Ministry of Education.

^{*}The singlet at δ 3.01 ppm was ascribed to protons of one of two N-methyl groups of the former set and those of two N-methyl groups of the latter set.

References

- 1 D.E. Webster, Adv. Organomet. Chem., 15 (1977) 147.
- Y. Fuchita, K. Hiraki and T. Uchiyama, J. Chem. Soc., Dalton Trans., (1983) 897.
 T.A. Stephenson, S.M. Morehouse, A.R. Powell, J.P. Heffer and G. Wilkinson, J. Chem. Soc., (1965) 3652.
- 4 L.Yu. Ukhin, N.A. Dolgopolova, L.G. Kuz'mina and Yu.T. Struchkov, J. Organomet. Chem., 210 (1981) 263.
- J. Powell, J. Am. Chem. Soc., 91 (1969) 4311.
 A.J. Deeming and I.P. Rothwell, J. Organomet. Chem., 205 (1981) 117.

JOURNAL OF ORGANOMETALLIC CHEMISTRY, VOL. 280, NO. 2

AUTHOR INDEX

Arad-Yellin, R., 197 Assadourian L. 153	Haaland, A., C43 Häberle, K., 183	Oro, L.A., 261
125auounan, 2., 100	Harris, R.K., 281	Packer, K.J., 281
Baccar, B., 165	Hiraki, K., C51	
Bellassoued, M., 165	Horn, E., 289	Pete J.P. 269
Bin Shawkataly, O., 289	Hudson, A., 173	Pinillos MT 261
Black, P., 159		1 111105, 14.1., 201
Bruce, M.I., 289	Jackson, R.A., 173	
Butler, I.R., C47		Raubenheimer, H.G., 241
By water, S., 159	Klein, HP., 203	Reams, $P_{.,281}$
	Klein, S.I., 281	Rhodes, C.J., 173
Cullen, W.R., C47	Klement, U., 215	Riahi, A., 269
	Kreiter, C.G., 225	Ricci, A., 177
Del Vecchio, A.L., 173	Kroto, H.W., 281	Riess, J.G., 215
Döppert, K., 203	Kruger, G.J., 241	
Doyle, G., 253		Schilling, B.E.R., C43
Dräger, M., 183	Lachance, P., 159	Shawkataly, O.bin, 289
Dyk, M. Van, 241	Lappert, M.F., C43	Snow, M.R., 289
	Leyendecker, M., 225	
El Borgi, A., 165	Linford, L., 241	Tejel, C., 261
Engen, D. Van. 253	Lotz, S., 241	Thewalt, U., 203
e , , <u>-</u>		Thorne, A.J., C43
Faure B 153	Mann, B.E., C47	, , ,
Figure $M = 177$	Matsumoto, Y., C51	Van Durk M 941
Fieldberg T C43	Meidine, M.F., 281	$V_{2n} E_{ndon} D = 253$
Fuchita Y C51	Mordini, A., 177	Vali Eligen, D., 200
1 uomba, 1., 001	Muzart, J., 269	volden, 11. v., 045
Gau, G., 153	Nixon, J.F., 281	Wachter, J., 215
Gaudemar, M., 165	Nurse, C.R., C47	Wudl, F., 197